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Exact Fixed-node Quantum Monte Carlo Self-optimizing Procedure

HUANG Hong-Xin"

College of Chemistry and Chemical Technology Hunan Normal University ~Changsha

In this paper a novel exact fixed-node quantum Monte Carlo

EFNQMC algorithm was proposed which is a self-optimizing
and self-improving procedure. In contrast to the previous EFN-
QMC method the importance function of this method is opti-
mized synchronistically in the diffusion procedure but not be-
fore beginning the EFNQMC computation. In order to optimize
the importance function the improved steepest descent tech-
nique is used in which the step size is automatically adjustable.
The procedure is quasi-Newton type and converges super linear-
ly. The present method also uses a novel trial function which
has correct electron-electron and electron-nucleus cusp condi-
tions. The novel EFNQMC algorithm and the novel trial func-
tion are employed to calculate the energies of 1 'A; state of
CH, 1Ag state of Cg and the ground-states of H, LiH Li, and
Hzo.
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Introduction

FNQMC

method which solves the Schriodinger equation by an ap-

The fixed-node quantum Monte Carlo

propriate diffusing random walk of electrons has been suc-
cessfully utilized in the domain of quantum chemistry.! A
given generally optimized trial wave function ¥t is used
as an’ importance function” in the stochastic approach that
solves the' diffusion equation” . Recently a novel method
for the FNQMC has been proposed which is called the ex-
act FNOMC EFNQMC method.? EFNQMC method usu-
ally recovers about 80%—90% of the correlation energy of
small molecules.

There are several obstacles in the EFNQMC calcula-
tion

1 Before beginning the EFNQMC computation the
parameters of the trial function importance function Y
must have been optimized by the variational Monte Carlo

VMC method. Optimization of these parameters is both
time-consuming and expensive.

2 The optimization is not efficient because there
are two different samplings required in the VMC and EFN-
QMC methods.

3 Previously Umrigar Huang Bueckert and oth-

ers proposed methods for optimizing the trial functions.>?
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Umrigar employed the variance minimization technique
over a fixed set of configurations of the electron samples
from | ¥y12. In practice there is a* weight ill-condition”
about the node of the trial function. A steepest descent
technique was employed by Huang and Bueckert . The
technique converges linearly and even for the optimization
of a quadratic function it often converges very slowly and
encounters the ill-condition especially near the optimum
point .

In this paper an approach for improving the EFNQMC
method is proposed which has the following advantages

1 It is a self-optimizing diffusion procedure. In the
novel EFNQMC computation the parameters of the impor-
tance function W'y are optimized synchronistically. It is e-
conomical in CPU time.

2 This novel algorithm is a self-improving Monte
Carlo scheme. With this method one could construct well-
behaved trial function and improve the accuracy and con-
vergence of EFNQMC computations .

3 In order to optimize the importance function the
improved steepest descent technique is used in which the
step size is automatically adjustable. The procedure is
quasi-Newton type and converges super linearly .

In the present paper a novel trial function is also
used which has correct electron-electron and electron-nu-
cleus cusp conditions. The electron-nucleus cusp condition
proves the most significant.

In order to test the correctness of the novel EFNQMC
algorithm the values of the zeroth and the first approxima-
tion of the energies of 1 'A| state of CH, ]Ag state of Cg
and the ground-states of H, LiH Li; and H,O have been

calculated using the self-optimizing procedure.
EFNQMC calculation

H represents Hamilton operator for a system W,
represents a trial function for the FNQMC method and
Uy is an' exact wave function” which possesses the same
node structure as that possessed by ¥ and has’ node ap-

proximation”  then
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It is proved that the value of the energy calculated us-
ing the traditional FNQMC method is only the zeroth order
approximation of the eigenvalue of the energy and the first
order approximation value is?

E_ Fl 22
Hy-3 H,H,+2 H, ?

E\=H, -

As can be seen from Eqs. 1 and 2 that calculation of
the first order approximation of the eigenvalue of the ener-
gy for a system using EFNQMC method needs not revise
the traditional FNQMC program but only needs to calcu-
late H; i=1 2 3 according to the original FNQMC
process.

Optimization theory

For optimizing the importance function we minimize

A

1Y
A=N§ N

= Ey- Eq? 3

E[‘ = H‘PT/WT and ET is

the’ trial energy” . The sum is over the N configurations in

where E7 is the' local energy”
the diffusion process.' Suppose Wy P R is the impor-
tance function in the EFNQMC computation where P =

p1 p2 ... p; denotes the set of parameters to be op-
timized and R identifies the coordinate space of electrons.
The first and the second derivatives of A with respect to
the parameter P take the forms

oA
g=a—PV
=%2[2EI_ET%i
=2 E. - Ey % 4
92A
7= 5p2
v 2l(5) e me e 25
N 2
- w25,
L[] 2 ;

The approximation in Eq. 5 is reasonable. First for
most cases it has been proved to be a good approximation.

Second the extent of the approximation is not important

here if Eq. 5 is positive. In the following discussion it
can be seen that the variance of ¢ might be corrected by
using an adjustable step size.

The classical steepest descent method for uncon-
strained minimization of A P is of the form

P = Pr = A8 6

The search direction gj, is chosen as the gradient of A P
at P,

g =8 Py
_ %)
‘(aP \ 7

where k indicates the kth iteration. Ay is a step-size factor
obtained with a one-dimensional search which was an em-
pirical parameter in previous work.¥> We start from Eq.

6 and derive the expression of the automatically ad-
justable A;. Eq. 6 is rewritten as

Py.1=P, - Mg, 8

where M = Al
Let

I, is considered temp as a unit matrix.

Spo1=Pr=Pr_y 9

Ye-1= 8k — k-1 10
Note that the quasi-Newton equation takes the form
Vi 1= HpSp _ 4 11

where Hj is Hessian matrix of A P . We attempt to ad-
just the step size A; so that Mj, closes to Hi ! which im-

plies that the Euclidean norm of Sy _|— M;y; | is mini-
mized
min || S 1= My 1 2 12
From Eq. 12 one can easily obtain the relationship
Ak = Skowk-1 / Yh-1yk-
_ Pi—Pri " gi—gr 13
gk— 81 " gk gk

where ST _| denotes the transposition of the column vector
Sk e ..

Eq. 13 suggests that A; could be adjusted automat-
ically by the value of P and g from the % —1 th and kth
iterations. This step size implies that the steepest descent
behaves like a partial quasi-Newton method .

Considering this problem in more detail i.e. to
make the descent procedure more similar to quasi-Newton
it is necessary to make M) approach H ! closely. Besides
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adjusting A, we might arrive at this result by improving g
- : Ppii=Pr= A 14
the elements of /. In fact we can substitute the recipro- q I
cal of the second derivative of A P with respect to P for Combinine E 4 45 b
the main diagonal element 1 of the identity matrix [, . Thus ombriting qs- an we can see that
M. becomes such a matrix that the main diagonal elements ok,
consist of the reciprocals of the components of ¢ = 92A/ g Ey = Ex oP
OP? and the off-diagonal elements are zero. Obviously (q ) = OF,\? 15
the reconstructed M), approaches further H;'. In summa- ( oP )
1ty the process of* steepest descent” described here is
governed by the following equation From Egs. 4 13 14 and 15  we get
oF
Er-Er 55
Py, =P L S
k+1—= 1k — 2 ( aEL) 2 X
oP k
oFEL oF,
T L _ ==
Pk_Pk—l {[ EL_ET ap]k [ EL_ET aP]k—l} 6
oFL ok, r oF, oFL
([ e 51T 00 P {lwemee o) - Lo 5,
Eq. 16 is an essential formula for optimizing wave func- and for electron-electron terms
tion under the diffusion condition.
i 21

Trial wave function

The most commonly used trial wave function in the

FNQMC method has the form
v=0'p'o" 17

where @' and @ ¥ indicate spin-up and spin-down single
Slater determinants respectively which are constructed
of the molecular orbitals composed of a linear combination
of Slater basis functions. @ is a correlation function and
it is taken here to be a product of electron-electron corre-
lations as well as electron-nucleus correlations.

The particular form for the @ that we use is one pro-
posed by Boys and Handy °

OC = exp >, Uy 18

Ii<j

NI
A

Uy = DA my oy cw x
k

P + T rou 19
i gt
where the I sum runs over nuclei the ij sum is over elec-
tron pairs and the £ sum runs over the N [ terms in
the correlation function used around each nucleus. The r
functions are for nucleus-electron terms

b’ril

f” - 1+ blril 20

I =
v 1+ dlrij
The my; ng and oy are taken to be integers and the

function A is used to maintain consistency with Boys and

Handy

1 ms£n

172 m=n 22

Amn:{

The parameters b and d represent the inverse of the effec-
tive range of the correlations. In our calculations only one
b and d value is taken for each nucleus but clearly this
restriction could be relaxed. To satisfy the electron-elec-
tron cusp condition for unlike spin electrons the only
term with o =1 is with n = m =0 and with the coefficient
c=1/2d

Results of sample calculations as shown later indi-
cate that this type of correlation function if employed in
EFNQMC runs is capable of giving much more accurate

results .
Self-optimizing diffusion process

Before starting the EFNQMC computations one has
to choose a suitable form of trial function the initial val-
ues of P and the trial energy E7. The self-optimizing pro-
cess can be summarized as follows

i Select N diffusion particles as a set of initial con-
figurations according to ¥y Px-o R . We call the ini-
tial configurations a configuration block 0. Use Eqs. 4

and 5 to compute g/q k-¢ over block 0. Let Ay =
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0.05—0.1 and update the value of parameter P

Pkilzpkzo—ao(ﬂ) 23
qTk=0
and thus one obtains a new ¥ Px-; R .

ii  Pick the mth configuration from the configura-
tion block. The electrons in this configuration will move.
Let them diffuse independently for a small time z accord-
ing to the Gaussian part of the Green' s function G . If
the current electron is the jth electron in configuration m
it moves to’

rmo=r" o VInl ¥y RO+ y 24

J

m

where r’j is the three-dimensional coordinate of the

electron j y is a three-dimensional Gaussian random
variable with a mean of zero and a variance of 7. After
electron j moves as Eq. 24  the acceptance probability

of the movement is

|+ R" 12G R"—>R ¢
¥+ R 1?G R~R' ¢

A R—~R' 7 =min|1
25

When all the n electrons in the current configuration
m had moved once the branching probability M, for con-
figuration m was calculated from the exponential prefactor
of the Green’ s function G

M,=exp -7 E, R" -Er 26

After the N configurations in the block were diffused ac-
cording to Eqs. 24 — 26  a new configuration block
block 1 was formed.

iii  Note that the right-hand-side quantities in Eq.

16 are derived from block 0 and 1. Use Eq. 16 over
block O and 1 to calculate Pj -, and a newer ¥t Pg-»
R can be obtained.

iv Repeat steps ii and iii until the steady state
is reached.

During the self-optimizing diffusion process the fol-
lowing aspects should be noted.

1 The' trial energy” Ey is estimated by the aver-
age of Ky from a prior block. So Et and the block are up-
dated synchronistically .

2 In the course of a circle if A <0 let A =
0.05—0.1 and then restart the circle.

3 The criterion of convergence is chosen as

IAE; <1077,
Results and discussion

In order to test the correctness of the novel EFNQMC
method the values of the zeroth and the first approxima-
tion of the energies of 1 'A; state of CH, 1Ag Cy4, acet
state of Cg and the ground-states of H, LiH Li, and H,0

have been calculated using the self-optimizing procedure .

The geometrical configurations of these states were given

in the literature.> " HF B type function is used as a trial

function ¥ for the novel EFNQMC method refer to Eqs.
17 — 19

The numbers of the initial configuration taken by us
are 1000 H, 5000 CH, LiH and Li, 10000 H,O
and 12000 Cg and the time step are 0.005/h H,
0.001h CH, LiH and Li; and 0.0001/h Cg and
H,0  respectively. The times of calculation required on
a P4 computer are 5 min H, 51 min LiH 69 min
Li, 90 min CH, 231 min H,0 and 3550 min

Cg respectively. The values of the zeroth and the first
approximation of the energies for these states calculated
using the novel EFNQMC method FE and E| are given
in Table 1. For the convenience of comparison Table 1
also lists the values of the energies for these states calcu-
lated using H-F  CI and the ordinary EFNQMC meth-
ods.? 7 In addition the experimental data which are tak-
en from the literatures ® of the values of these energies are
given in Table 1 where the percentage listed below each
datum is a percentage of the electronic correlation energy
corresponding to it.

It can be seen from the data given in Table 1 that for
1'A, state of CH, 1Ag Cy4, acet state of Cg and the
ground-states of Hy LiH Li, H,0 the calculation only
needs to be in progress until the first approximation when
using our novel EFNQMC method. All the percentages of
the electronic correlation energy are over 96% which are
much better than the values calculated using CI and the
ordinary EFNQMC methods &, is the first approximation
data calculated using the ordinary EFNQMC method . For
example for Cg molecule the energy values obtained using
the CI method the ordinary EFNQMC methods e; and
the novel EFNQMC algorithm E; are -303.436
—304.258 and —304.3342 a.u. respectively. The per-
centages of the correlation energy recovered by these dif-
ferent methods are 52.34% 92.77% and 98.58% re-
spectively. The exact nonrelativistic energy is — 304.361
a.u. and Hartree-Fock energy is —302.47567 a.u..%’
It can also be seen that for Cg the novel EFNQMC algo-
rithm in the present paper recovers the correlation energies
of 1.7331 and 1.8577 a.u. for Egand E, the percent-
ages of the correlation energy recovered by Eqand E| are
91.97% and 98.58% and there are very small statistical
errors of 0.0004 and 0.0006 a.u. respectively. While
the previous EFNQMC method? gives the correlation ener-
gies of 1.691 1.748 and 1.847 a.u. for ey €; and ¢,
with the errors of 0.004 0.006 and 0.008 a.u. the
percentages of the correlation energy recovered by e¢ ¢
and €; are 89.75% 92.77% and 97.99% respective-
ly. For the data of other molecules shown in Table 1 a
similar analysis can be performed.

In a word the novel EFNQMC algorithm compared
with the previous EFNQMC method has a higher accura-
cy and a smaller statistical error showing that the algo-
rithm described in this paper is very successful .
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Table 1 Energies hartrees of 1 'A; state of CH, lAg C4, acet state of Cg and the ground states of H, LiH Li; and H,0 calculated from
several methods

1'A; CH, 'A, Cuy acet H, LiH Li, H,0
Experimental -39.133 -304.361 - 1.17447 -8.07021 5 - 14.9954 -76.4376
H-F limit —-38.8944 -302.477 -1.1336 -7.987 -14.872 -76.0675
Best CI -39.0272 —-303.436 -1.1737 - 8.0647 -14.903 -176.3683
55.66% 52.34% 98.12% 93.38% 25.12% 81.28%
Ordinary EFNQMC
€0 -39.092 3 -304.168 4 -1.1744 3 - 8.0468 2 —-14.9818 4 -76.231 2
82.79% 89.75% 99.83% 71.86% 88.98% 44.17%
€ -39.112 3 -304.258 6 -8.0691 3 -14.9901 6 -76.375 3
91.07% 92.77% 98.67% 95.71% 83.09%
Novel EFNQMC  this work
Ey -39.1072 5 -304.2097 4 -1.1745 2 -8.0610 2 —-14.9844 1 —-76.3308 2
89.07% 91.97% 99.91% 88.99% 91.08% 71.15%
E, -39.1261 4 -304.3342 6 - 8.0685 2 -14.9933 2 -76.4264 5
97.11% 98.58% 97.95% 98.31% 96.98%
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